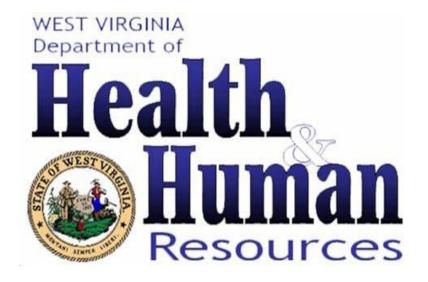
Keeping West Virginia Wild, Wonderful, and Well!

A New Initiative in Outpatient Antimicrobial Stewardship

Mariana M. Lanata, MD, FAAP

Jacob T. Kilgore, MD, MPH, FAAP

The West Virginia Antibiotic Awareness Team



Disclosures

- This work is grant-supported by the West Virginia Department of Health & Human Resources (WV DHHR)
- This webinar is not financially supported by the West Virginia Immunizations Network (WIN), but we are sincerely thankful for continued partnership

Objectives

- Introduction to antimicrobial stewardship
- Describe national, regional, and local data related to antimicrobial use in WV
- Summarize treatment recommendations for common infections managed in the outpatient setting (e.g. respiratory, urinary and skin/soft tissue infections)
- Introduce the stewardship team & current initiatives
- Connect with networks of providers across the state to identify key factors influencing antimicrobial stewardship barriers & successes

Objectives

Introduction to antimicrobial stewardship

- Describe national, regional, and local data related to antimicrobial use in WV
- Summarize treatment recommendations for common infections managed in the outpatient setting (e.g. respiratory, urinary and skin/soft tissue infections)
- Introduce the stewardship team & current initiatives
- Connect with networks of providers across the state to identify key factors influencing antimicrobial stewardship barriers & successes

non

"For most of the infectious diseases on the wards of Boston City Hospital in 1937, there was nothing that could be done beyond bed rest and good nursing care. Then came the explosive news of sulfanilamide, and the start of the real revolution in medicine."

> - Lewis Thomas Notes of a Medicine Watcher 1983 Viking Press

"The thoughtless person playing with penicillin treatment is morally responsible for the death of the man who succumbs to infection with the penicillin-resistant organisms."

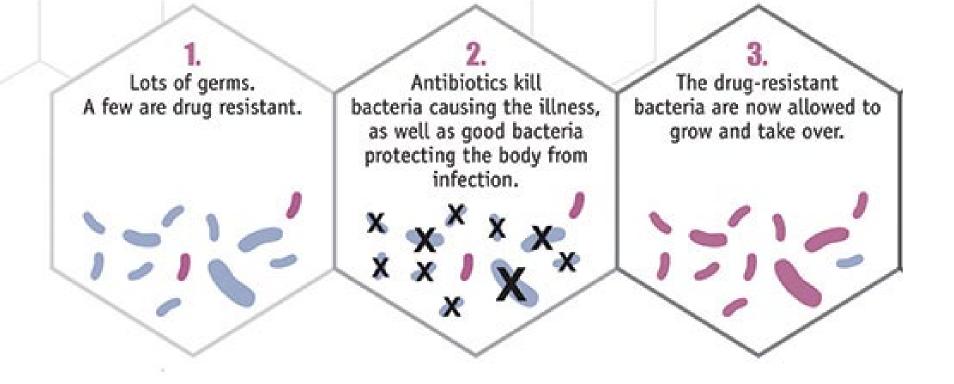
- Alexander Fleming

Lots of germs. A few are drug resistant.

VIV

- 27 T C C C C -

Lots of germs. A few are drug resistant.


11

Antibiotics kill bacteria causing the illness, as well as good bacteria protecting the body from infection.

X

2.

11

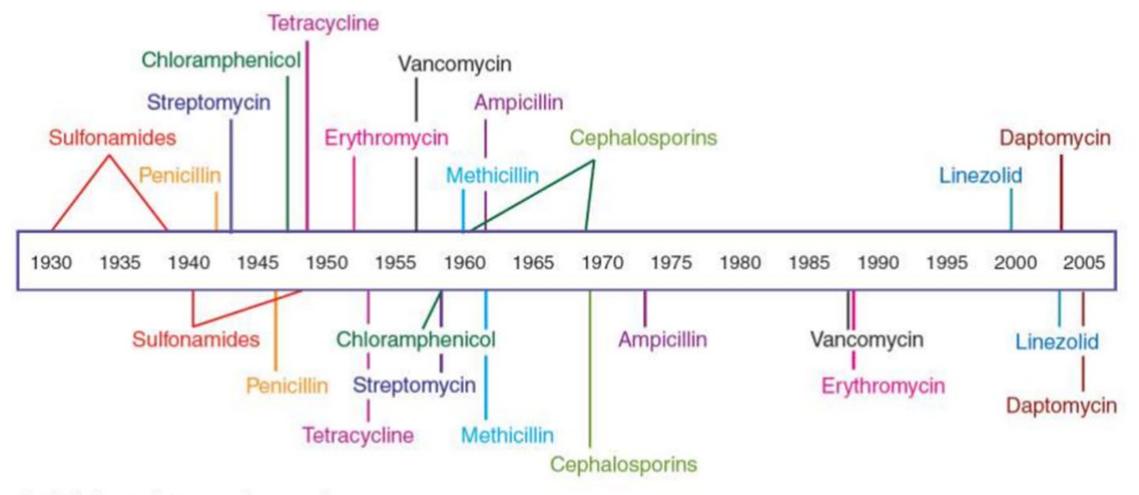
Lots of germs. A few are drug resistant.

111

Antibiotics kill bacteria causing the illness, as well as good bacteria protecting the body from infection.

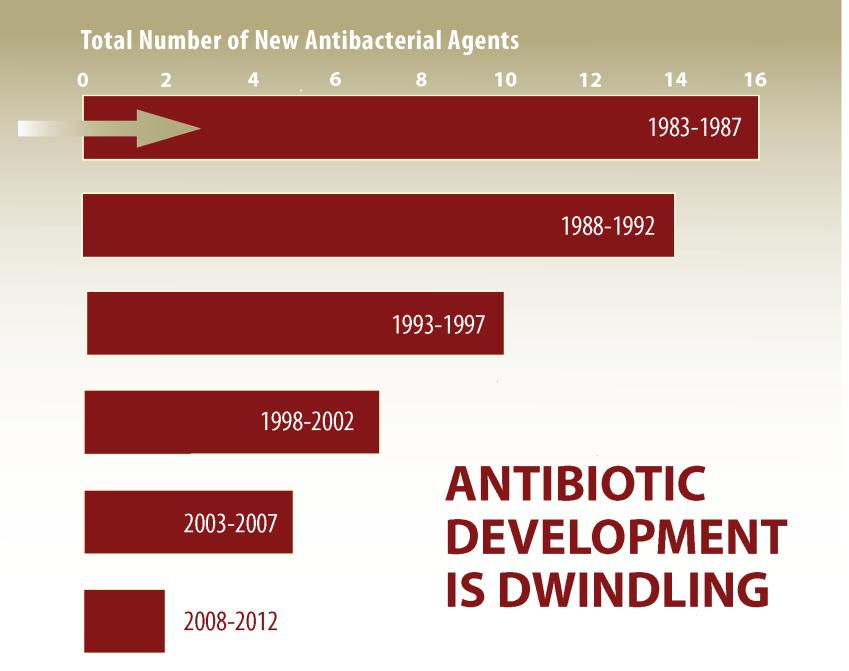
2.

The drug-resistant bacteria are now allowed to grow and take over.

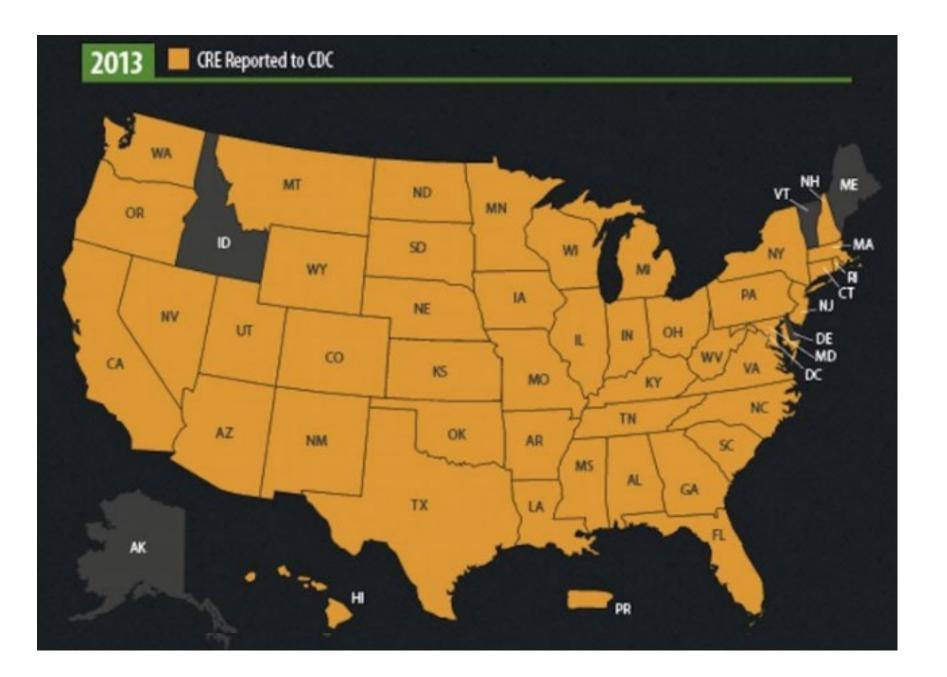

3.

Some bacteria give their drug-resistance to other bacteria, causing more problems.

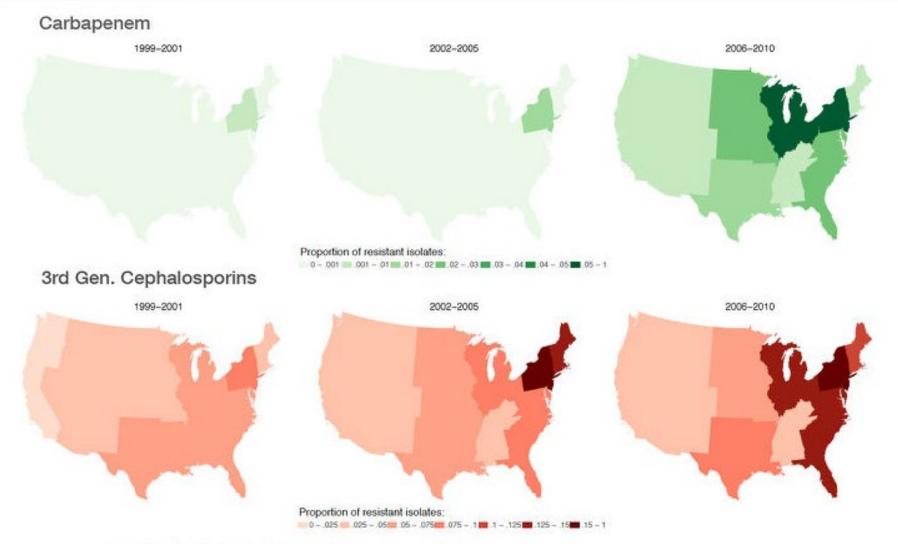
EVERY DOSE, EVERY DAY OF ANTIMICROBIAL EXPOSURE COUNTS!


Antibiotic resistance observed

Clatworthy 2007


Penicillin	Vancomycin	Imipenem	Daptomycin
Discovered 1943	Discovered 1972	 Discovered 1985 	Discovered 2003
Resistance 1945	 Resistance 1988 	 Resistance 1998 	 Resistance 2004
(2 years)	(16 years)	(13 years)	(1 year)

Source: *The Epidemic of Antibiotic-Resistant Infections*, CID 2008:46 (15 January) Clin Infect Dis. (2011) May 52 (suppl 5): S397-S428. doi: 10.1093/cid/cir153



Carbapenem and 3rd. gen. cephalosporin resistance among *K. pneumoniae* highest along the East Coast, but present in all regions of the country

Note: Data for 2010 available through July.

Data source: Braykov NB, Eber MR, Klein EY, Morgan DJ, Laxminarayan R. Trends in Resistance to Carbapenems and Third- Generation Cephalosporins among Clinical Isolates of Klebsiella pneumoniae in the United States, 1999-2010. Infect Control and Hospital Epidemiology. 2013; 34(3)

CDDEP THE CENTER FOR Disease Dynamics, Economics & Policy

Why Care?

ANTIBIOTIC RESISTANCE THREATS IN THE UNITED STATES 2019

New National Estimate*

Each year, antibiotic-resistant bacteria and fungi cause at least an estimated:

Clostridioides difficile** is related to antibiotic use and antibiotic resistance:

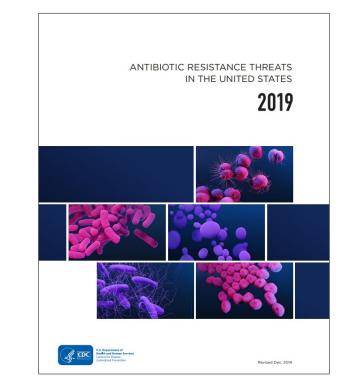
Reference: https://www.cdc.gov/drugresistance/biggest-threats.html

Urgent Threats

- Carbapenem-resistant Acinetobacter
- Candida auris
- Clostridioides difficile
- Carbapenem-resistant Enterobacteriaceae
- Drug-resistant Neisseria gonorrhoeae

Serious Threats

- Drug-resistant Campylobacter
- Drug-resistant Candida
- ESBL-producing Enterobacteriaceae
- Vancomycin-resistant Enterococci
- Multidrug-resistant Pseudomonas aeruginosa
- Drug-resistant nontyphoidal Salmonella
- Drug-resistant Salmonella serotype Typhi
- Drug-resistant Shigella
- Methicillin-resistant Staphylococcus aureus
- Drug-resistant Streptococcus pneumoniae
- Drug-resistant Tuberculosis


Concerning Threats

- Erythromycin-resistant group A Streptococcus
- Clindamycin-resistant group B Streptococcus

Watch List

- Azole-resistant Aspergillus fumigatus
- Drug-resistant Mycoplasma genitalium
- Drug-resistant Bordetella pertussis

Reference: https://www.cdc.gov/drugresistance/biggest-threats.html

Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis

Antimicrobial Resistance Collaborators*

Summary

Background Antimicrobial resistance (AMR) poses a major threat to human health around the world. Previous Lancet 2022; 399: 629-55 publications have estimated the effect of AMR on incidence, deaths, hospital length of stay, and health-care costs for specific pathogen-drug combinations in select locations. To our knowledge, this study presents the most comprehensive estimates of AMR burden to date.

Published Online January 20, 2022 https://doi.org/10.1016/ 50140-6736(21)02724-0

• 4.95 million (3.62-6.57) deaths associated with bacterial AMR

• 1.27 million (95% UI 0.911-1.71) deaths attributable to bacterial AMR

Antibiotic resistance and patient outcomes

- Increase in mortality, morbidity, length of hospitalization and cost of care
 - o S. aureus
 - Enterococcus species
 - o Gram-negative bacilli
- Delays in therapy or severity of illness likely contribute to worse outcomes.

Potential harms associated with antimicrobial treatment

- Antimicrobial resistance
- Clostridium difficile infections
- Idiosyncratic reactions
- Changes to the pediatric microbiome
- Side effects /safety profile of each antibiotic

Clostridium difficile infections

- Almost half a million infections are reported among patients in USA within a single year.
- 30,000 died within 30 days of diagnosis
- 76% of CDI in children had preceding antibiotic use.
- CDI in children is attributed to 7-12 admissions per 10,000 (KIDS database)
- Pediatric CDI is associated with increase mortality, longer length of hospitalization and higher costs among hospitalized children.

Lessa et. Al, N Engl J Med 2015 Sandora, PIDJ 2011 Zilberg, EID 2010 Sammons, CID 2013

Idiosyncratic reactions

- Steven Johnson Syndrome
- DRESS Syndrome
- Interstitial nephritis
- Drug Fever
- Serum Sickness
- Nicolau Syndrome

Changes in the microbiome

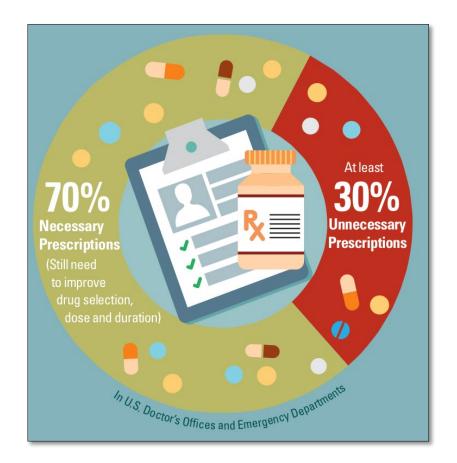
- Linked to obesity
- Linked to auto-immune illness
- Linked to asthma/allergies
- Significant alteration in microbiome of exposed neonates

1. Lassiter C. J Dairy Sci. 1955; Cho, Nature 2012; Trehan, NEJM 2013, 2016, Gough EK BMJ, Saari et al, Pediatrics, 2015, Bailey JAMA peds 2014, Gerber 2016 2. Horton, Pediatrics, 2015, *Pediatrics 2012;130:e794-e803*

3. Hirsch, AG Clin Exp Allergy, 2016, Metsala, Clinical and Experimental Immunology, 2014

U.S. ED visits for adverse drug events form antibiotics in children 2011-2015

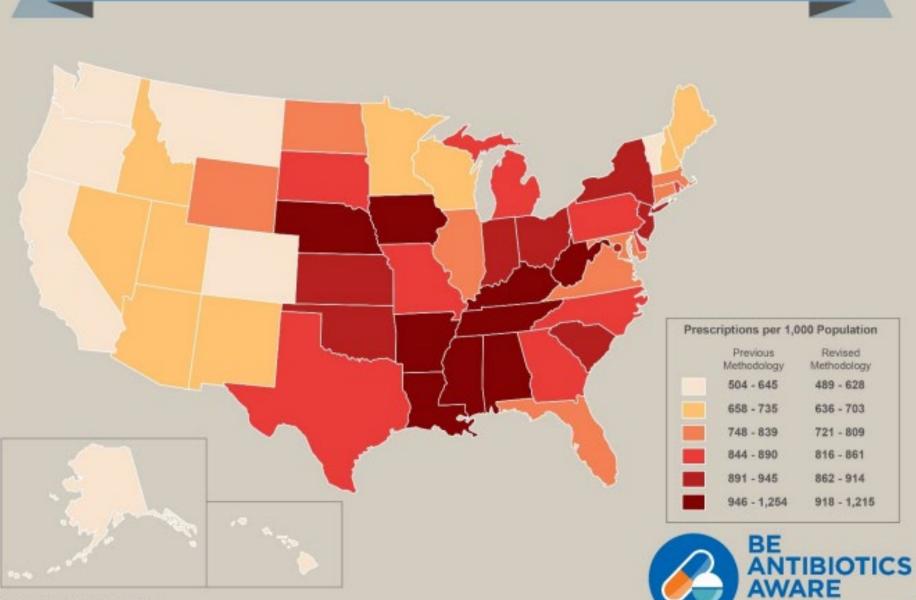
- NEISS-CADES project (CDC, US consumer product safety commission and FDA)
- About 70,000 national visits for adverse events due to drugs
- Assuming that 29-41% of outpatient prescribing is inappropriate, that amounts to 20,000-28,000 ED visits simply due to unnecessary antibiotics.


U.S. ED visits for adverse drug events form antibiotics in children 2011-2015

- 69,464 ED visits for antibiotic AEs each year
- 46.2% of all ED visits for adverse drug events
- 40.7% involved children less than 2 years old
- 86.1% involved an allergic reaction
- Amoxicillin was the most frequent

Importance of Outpatient Stewardship

- An estimated **80-90%** of antibiotic use occurs in the *outpatient setting*
- At least 30% of antibiotics prescribed in the outpatient setting are <u>unnecessary</u>
- A recent study by the CDC found only 50% of outpatient antibiotic prescribing was for the recommended first-line antibiotic¹



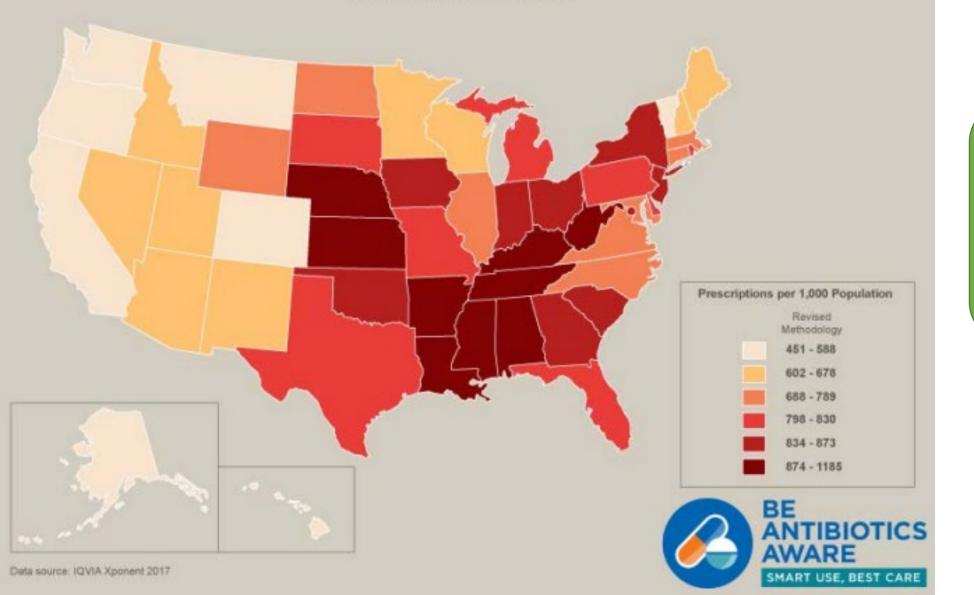
Objectives

- Introduction to antimicrobial stewardship
- Describe national, regional, and local data related to antimicrobial use in WV
- Summarize treatment recommendations for common infections managed in the outpatient setting (e.g. respiratory, urinary and skin/soft tissue infections)
- Introduce the stewardship team & current initiatives
- Connect with networks of providers across the state to identify key factors influencing antimicrobial stewardship barriers & successes

Community Antibiotic Prescriptions per 1,000 Population by State - 2017

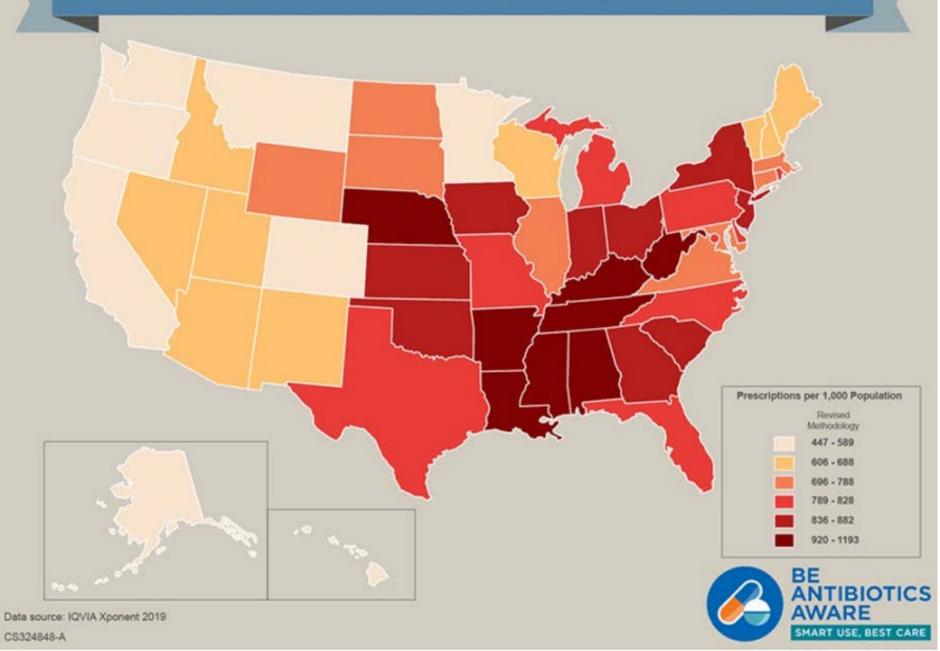
West Virginia 1st 1,215 prescriptions per 1,000 population

SMART USE, BEST CARE



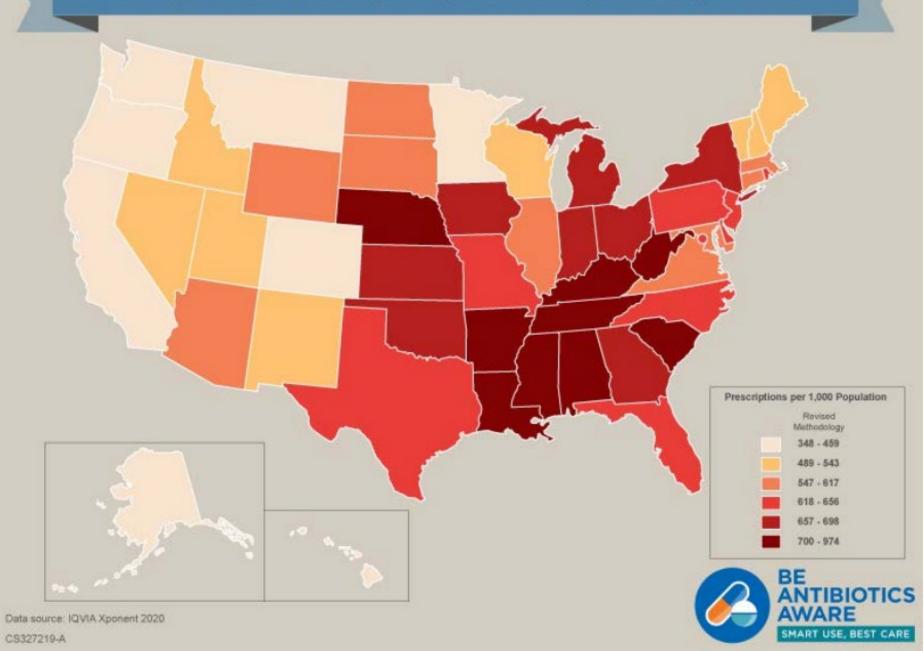
Data source: IQVIA Xponent 2017

Community Antibiotic Prescriptions per 1,000 Population by State - 2018


(revised methodology)

West Virginia 1st 1,185 prescriptions per 1,000 population

Community Antibiotic Prescriptions per 1,000 Population by State - 2019



West Virginia 1st 1,193 prescriptions per 1,000 population

Community Antibiotic Prescriptions per 1,000 Population by State - 2020

West Virginia 1st 974 prescriptions per 1,000 population

CDC Data - 2020

Rank	Location	Rate (per 1,000 population)
1	West Virginia	974
2	Mississippi	956
3	Alabama	922
4	Louisiana	920
5	Kentucky	887
6	Arkansas	844
7	Tennessee	842
8	Nebraska	718
9	South Carolina	700
10	Ohio	698

Why outpatient ASP in West Virginia?

- Identified a clear need
- Limited resources & unique obstacles
- Opportunity to serve & make a sustainable difference
- Long-term commitment & ongoing research opportunities including state & privately-funded partnerships

WV Pediatric Medicaid Project

- Model study: Smith MJ, et al. Kentucky Medicaid Outpatient Prescribing
- Data use agreement (DUA): Marshall, WV Medicaid, Duke
- **IRB:** Marshall IRB exemption
- Data source: Medicaid pharmacy and medical claims data
- **Study type:** cross-sectional analysis
- **Target population:** patients aged 0 months to 19 years who received an oral antibiotic prescription between January 1, 2018 & December 31, 2019

Primary Study Aims

- Aim 1a: Exploratory analysis reviewing WV medical and pharmacy pediatric Medicaid claims data to establish baseline demographic and clinical descriptive statistics to guide ASP interventions.
- **Aim1b:** Hypothesis generation for future analysis including models assessing diagnosis-specific prescribing, choice and duration of antibiotic therapy, potential modification across the population, etc.
- **Hypothesis:** pediatric Medicaid patients received broad-spectrum, outpatient antibiotics at higher rates than national average

Study Results

*This work has been published in the *Journal of Pediatric Infectious Diseases Society* (*JPIDS*) under the following reference:

Kilgore JT, Lanata MM, Willis JM, McCarthy MJ, Becker JB, Evans JE, Smith MJ. Utilization of West Virginia Pediatric Medicaid Claims Data to Guide Outpatient Antimicrobial Stewardship Interventions. *JPIDS*, 2021;piab125, PMID: 34939655. DOI: 10.1093/jpids/piab125.

Table 1. WV pediatric (<20 years) Medicaid patient population demographic summary by CY.</th>

	CY 2018				CY 2019				
	Patients	Rx	5	%	Rate per 1,000	Patients	Rxs	%	Rate per 1,000
Total (all WV Medicaid Claims)	204,606	234,4	.82		1,146	201,925	224,847		1,114
Provider type / Specialty								•	
Physician / Pediatrics		39,9	83	17.1%			38,349	17.1%	
Physician / Other Specialty ^a		59,5	01	25.4%			51,759	23.0%	
Other Provider ^a / Pediatrics		5,27	'8	2.3%			4,912	2.2%	
Other Provider / Other Specialty		129,7	20	55.3%			129,827	57.7%	
Spectrum of antibiotic coverage					-		1	1	- 1
Broad-spectrum		107,5	51	45.9%			100,847	44.9%	
Narrow-spectrum		126,9	31	54.1%			124,000	55.2%	
Race/ethnicity						1	<u> </u>	I	
African American / Non-Hispanic	25,039	25,5	70	10.9%	1,021	25,607	26,333	11.7%	1,028
Caucasian / Non-Hispanic	151,606	180,7	70	77.1%	1,192	148,341	172,010	76.5%	1,160
Other ^c	27,961	28,1	42	12.0%	1,006	27,977	26,504	11.8%	947
Sex									
Female	101,040	125,9	41	53.7%	1,246	99,664	120,274	53.5%	1,207
Male	103,564	108,5	541	46.3%	1,048	102,261	104,573	46.5%	1,023
Age Groupings (years) ^c									
0-2	34,732	48,7		20.8%	1,403	33,964	45,642	20.3%	1,344
3-9	75,220	91,3		39.0%	1,214	73,223	87,828	39.1%	1,199
10-19	94,654	94,4	35	40.3%	998	94,738	91,377	40.6%	965
Geographic location (WVMR)									
WVMR 1	47,304	48,8	42	20.8%	1,033	46,838	48,056	21.4%	1,026
WVMR 2	54,472	61,8	19	26.4%	1,135	54,701	60,100	26.7%	1,099
WVMR 3	49,469	52,4	25	22.4%	1,060	49,461	49,554	22.0%	1,002
WVMR 4	46,291	65,0	27	27.7%	1,405	46,048	63,314	28.2%	1,375
Geographic location (population density)									
Rural	28,457	36,373		1,278	28,114	34,674		1,233	28,457
Suburban	55,289	71,784		1,298	54,487	68,402		1,255	55,289
Urban	120,230	125,398		1,043	118,827	121,205		1,020	120,230

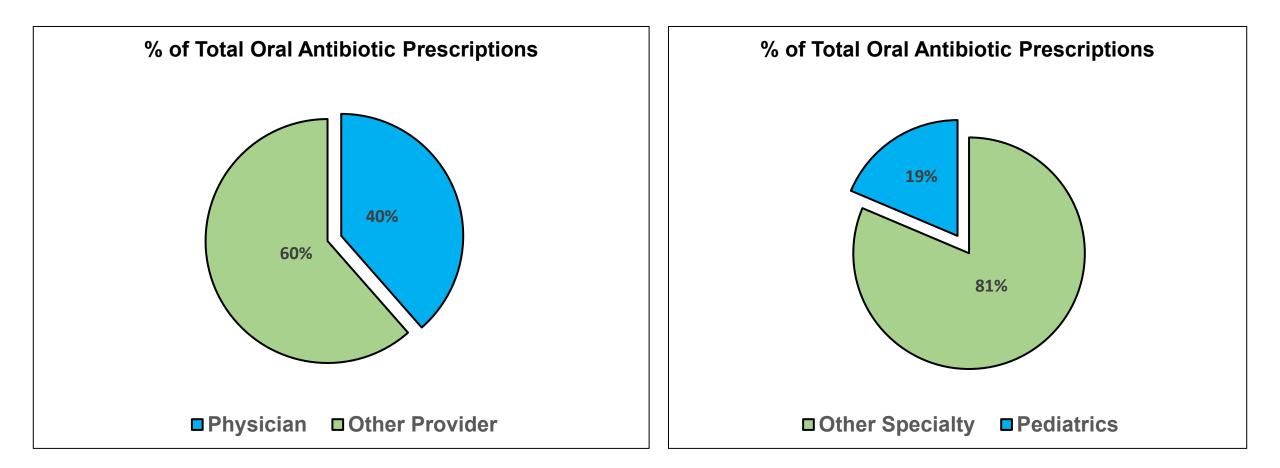


Table 1. WV pediatric (<20 years) Medicaid patient population demographic summary by CY.

	CY 2018				CY 2019			
	Patients	Rxs	%	Rate per 1,000	Patients	Rxs	%	Rate per 1,000
Total (all WV Medicaid Claims)	204,606	234,482		1,146	201,925	224,847		1,114
Provider type / Specialty								
Physician / Pediatrics		39,983	17.1%			38,349	17.1%	
Physician / Other Specialty ^a		59,501	25.4%			51,759	23.0%	
Other Provider ^a / Pediatrics		5,278	2.3%			4,912	2.2%	
Other Provider / Other Specialty		129,720	55.3%			129,827	57.7%	

Figure 1. Antibiotic prescribing in WV children, 2019.

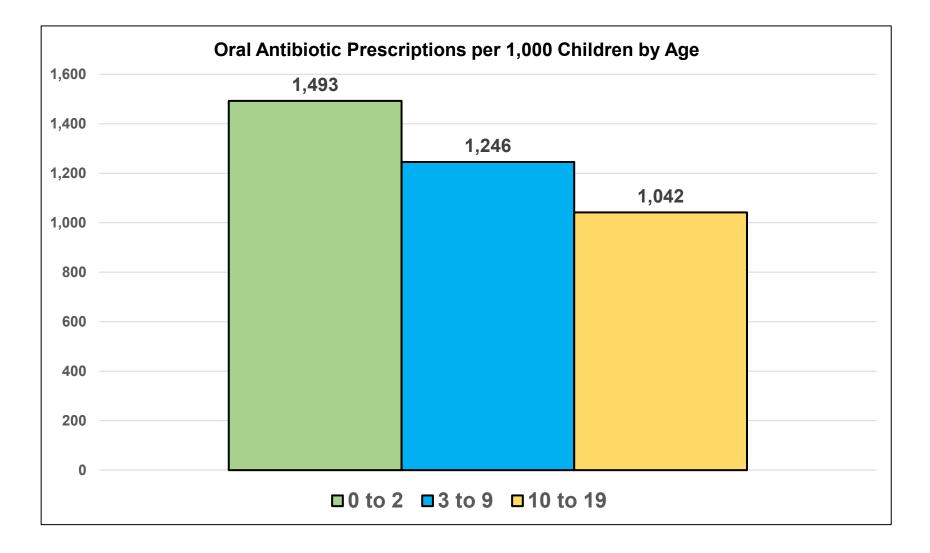


Table 1. WV pediatric (<20 years) Medicaid patient population demographic summary by CY.</th>

		CY 2018				CY 2019			
	Patients	Rxs	%	Rate per 1,000	Patients	Rxs	%	Rate per 1,000	
Total (all WV Medicaid Claims)	204,606	234,482		1,146	201,925	224,847		1,114	
Age Groupings (years) ^c									
0-2	34,732	48,719	20.8%	1,403	33,964	45,642	20.3%	1,344	
3-9	75,220	91,328	39.0%	1,214	73,223	87,828	39.1%	1,199	
10-19	94,654	94,435	40.3%	998	94,738	91,377	40.6%	965	

Figure 2. Antibiotic prescribing in WV children, 2019.

Table 1. WV pediatric (<20 years) Medicaid patient population demographic summary by CY.</th>

		CY 2018				CY 2019			
	Patients	Rxs	%	Rate per 1,000	Patients	Rxs	%	Rate per 1,000	
Total (all WV Medicaid Claims)	204,606	234,482		1,146	201,925	224,847		1,114	
Geographic location (WVMR)									
WVMR 1	47,304	48,842	20.8%	1,033	46,838	48,056	21.4%	1,026	
WVMR 2	54,472	61,819	26.4%	1,135	54,701	60,100	26.7%	1,099	
WVMR 3	49,469	52,425	22.4%	1,060	49,461	49,554	22.0%	1,002	
WVMR 4	46,291	65,027	27.7%	1,405	46,048	63,314	28.2%	1,375	

Figure 3. Antibiotic prescribing in WV children, 2019.

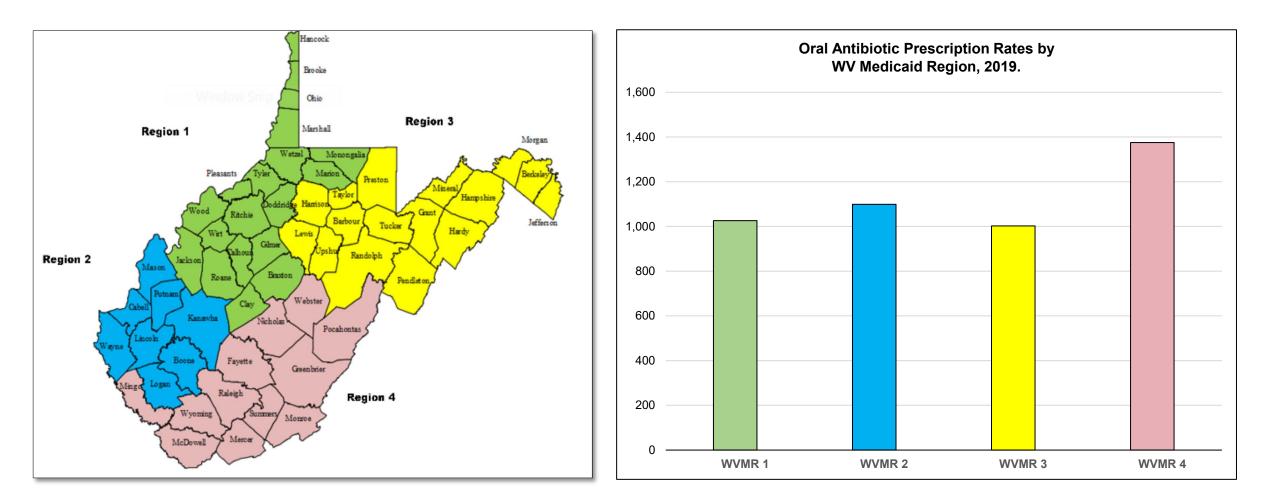
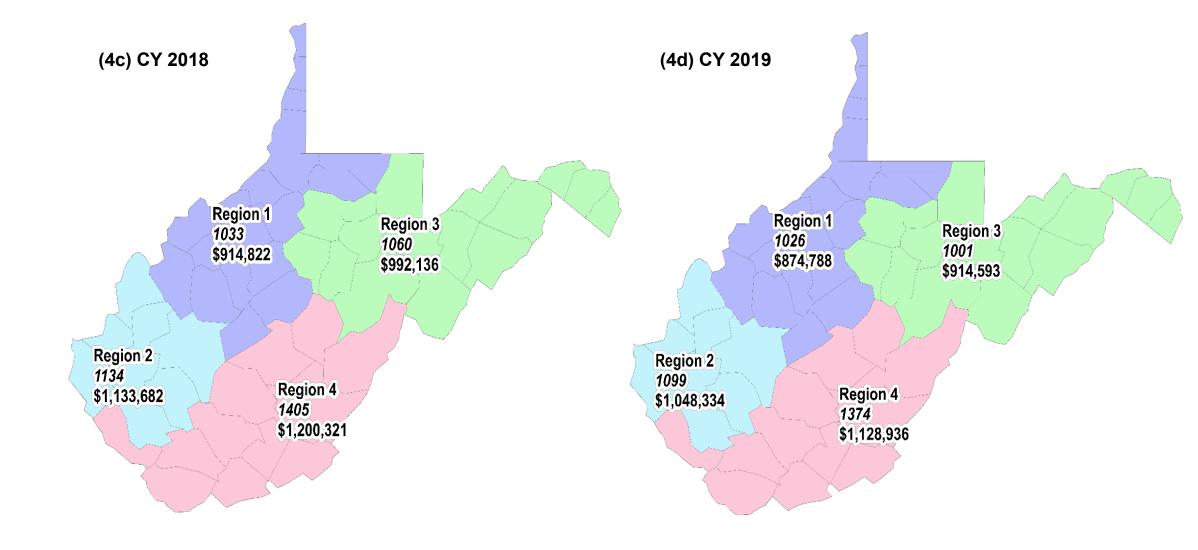



Figure 4. GIS mapping of prescriptions per 1,000 WV children by county, WVMR with total cost & CY, 2018 (*4a,c*) & 2019 (*4b,d*).

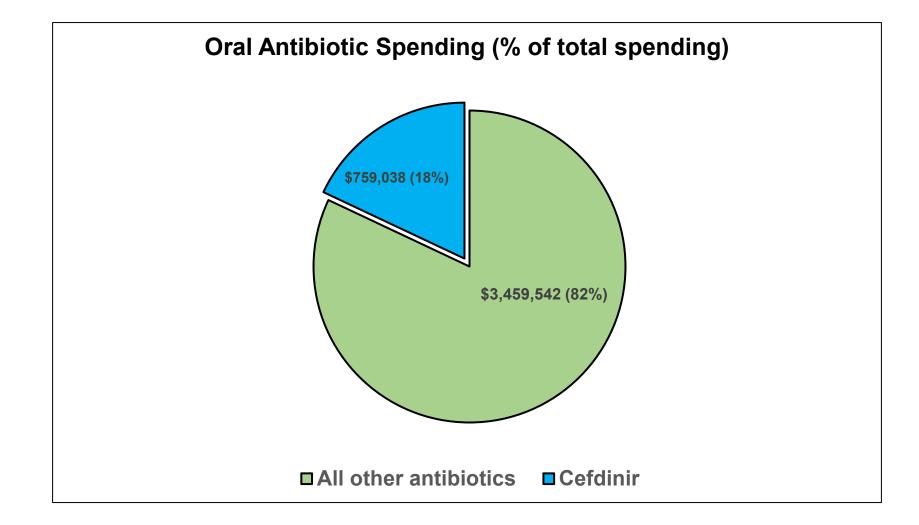
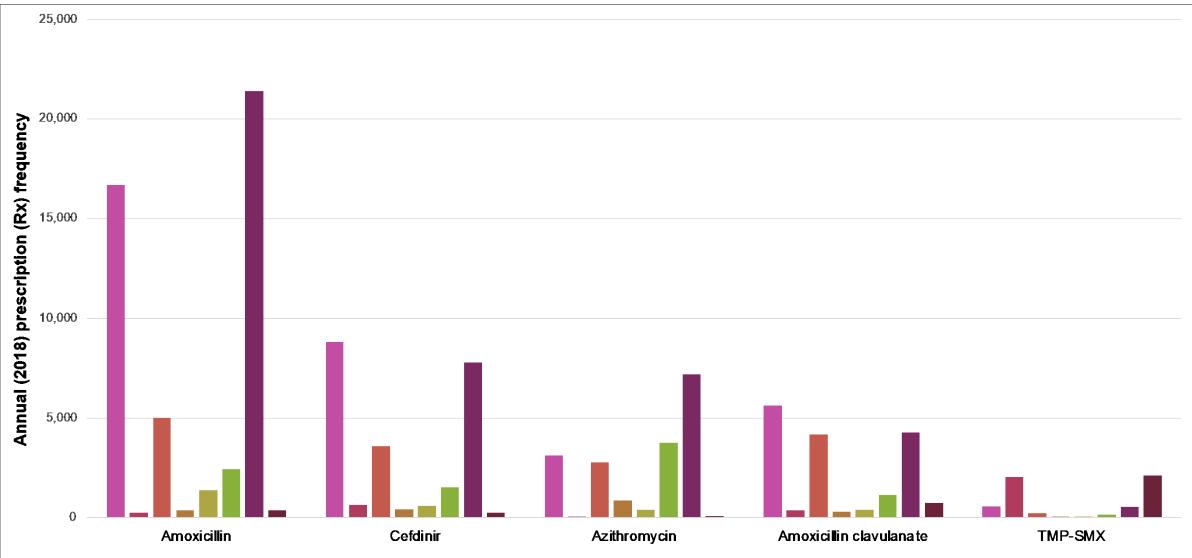
Table 2. Total WV Medicaid spending (USD \$) by CY.

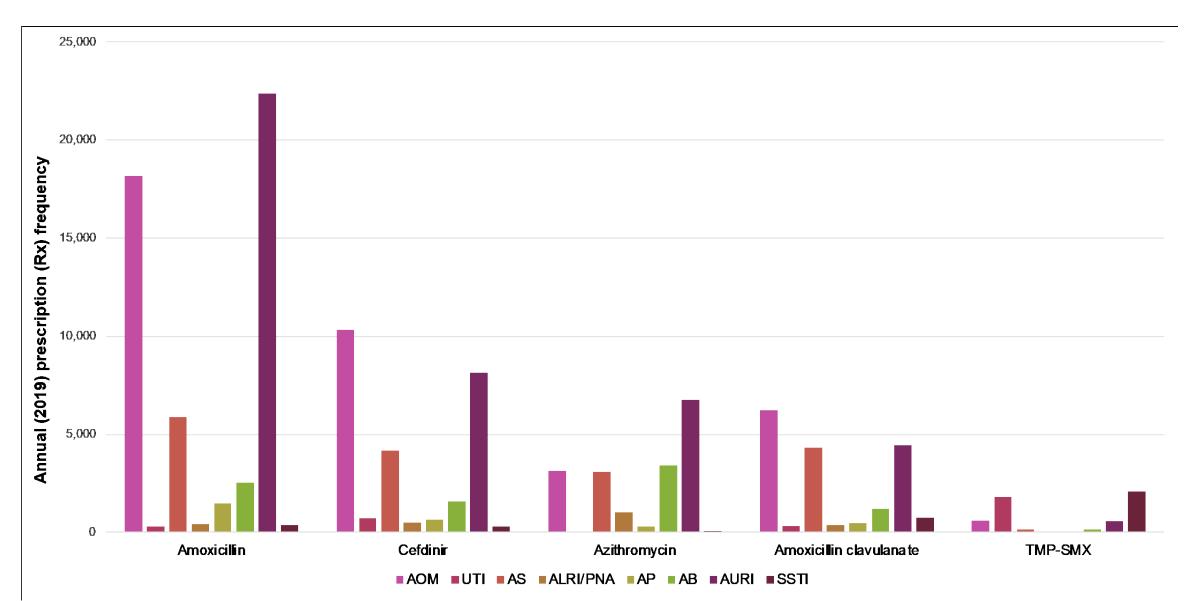
	Oral Antibiotic Prescriptions, Age 0-19 (<i>n</i> = 204,606 children, 2018; n = 201,925 children, 2019)							
CY	Total Prescriptions	Prescriptions per 1,000 children	Total Spending, oral (USD \$)	Total Spending, all (USD \$)	Average spending per prescription, oral (USD \$)			
2018	234,482	1,146	\$4,366,091	\$7,796,701	\$18.62			
2019	224,847	1,114	\$4,041,687	\$7,731,375	\$17.98			

Table 3. Review of top 10 most prescribed oral antibiotics, CYs 2018 & 2019.

Top 10 most prescribed oral antibiotics	Prescription frequenc	y (% annual total)	Total spending (USD \$), (% annual total)		
	CY 2018	CY 2019	CY 2018	CY 2019	
Amoxicillin	83,286 (35.5)	81,632 (36.3)	\$1,017,390 (23.3)	\$1,025,222 (25.4)	
Cefdinir	39,167 (16.7)	39,096 (17.4)	\$906,407 (20.8)	\$758,034 (18.8)	
Azithromycin	33,821 (14.4)	29,950 (13.3)	\$528,174 (12.1)	\$450,242 (11.1)	
Amoxicillin clavulanate	28,789 (12.3)	27,579 (12.3)	\$680,053 (15.6)	\$599,090 (14.8)	
Trimethoprim-sulfamethoxazole (TMP-SMX)	14,689 (6.3)	13,170 (5.9)	\$327,323 (7.5)	\$267,202 (6.6)	
Cephalexin	12,798 (5.5)	12,849 (5.7)	\$250,034 (5.7)	\$245,155 (6.1)	
Doxycycline	4,812 (2.1)	5,212 (2.3)	\$96,117 (2.2)	\$82,583 (2.0)	
Minocycline	3,774 (1.6)	3,465 (1.5)	\$77,592 (1.8)	\$69,744 (1.7)	
Nitrofurantoin	3,393 (1.4)	3,054 (1.4)	\$166,435 (3.8)	\$315,968 (7.8)	
Clindamycin	3,188 (1.4)	2,963 (1.3)	\$110,366 (2.5)	\$102,666 (2.5)	
	CY 2018	CY 2019	CY 2018	CY 2019	
Total 10 most prescribed oral antibiotics, total (%)	227,717 (97.1)	218,970 (97.4)	\$4,159,891 (95.3)	\$3,915,906 (96.9)	
All oral antibiotics, total (100%)	234,465	224,828	\$4,365,719	\$4,041,143	

Figure 5. Antibiotic prescribing in WV children, 2019.


Figure 6a. Top 5 antibiotic prescription frequencies for common outpatient infectious diagnoses, CY 2018 & 2019.

AOM UTI AS ALRI AP AB AURI SSTI

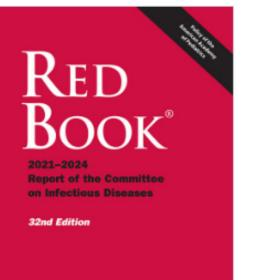
Figure 6b. Top 5 antibiotic prescription frequencies for common outpatient infectious diagnoses, CY 2018 & 2019.

How can we make this better?

Objectives

- Introduction to antimicrobial stewardship
- Describe national, regional, and local data related to antimicrobial use in WV
- Summarize treatment recommendations for common infections managed in the outpatient setting (e.g. respiratory, urinary and skin/soft tissue infections)
- Introduce the stewardship team & current initiatives
- Connect with networks of providers across the state to identify key factors influencing antimicrobial stewardship barriers & successes.

Know your guidelines!


https://jcesom.marshall.edu/departments-divisions/pediatrics/wv-antimicrobial-awareness/

Our Goal: "Right Drug, Right Dose, Right Duration." WV ANTIMICROBIAL AWARENESS MENU Home Helpful management summaries for common outpatient antibiotic uses Our Work Below are links from trusted sources on the management of common conditions based on age. Meet Our Team For Healthcare Professionals PEDIATRICS ADULTS For Patients, Patient Families & Community Members Community-acquired pneumonia (CAP) Urinary tract infection (UTI) Connect With Us Community-acquired pneumonia (CAP) Bacterial rhinosinusitis Resources · Group A strep pharyngitis Skin and soft tissue Acute otitis management (AOM) Bacterial rhinosinusitis Skin and soft tissue West Vinginia Ant biotic

Other guideline references

American Academy of Pediatrics

Red Book: 2021–2024 Report of the Committee on Infectious Diseases (32ND EDITION) 🔗

By Committee on Infectious Diseases, American Academy of Pediatrics; David W. Kimberlin, MD, FAAP; Elizabeth D. Barnett, MD, FAAP; Ruth Lynfield, MD, FAAP; Mark H. Sawyer, MD, FAAP

American Academy of Pediatrics ISBN electronic: 978-1-61002-578-2 Publication date: January 2021

Pediatric Acute Otitis Media (AOM)

- First-line: amoxicillin
 - If patient has received amoxicillin within past 30 days: amoxicillinclavulanate
- Duration:
 - >6 years: 5 days
 - 2-5 years: 7 days
 - <2 or severe symptoms: 10 days

Pediatric Acute Bacterial Pharyngitis

- First-line: penicillin or amoxicillin
- Penicillin allergy: cephalexin, clindamycin, or azithromycin
- Duration: 10 days

Pediatric Acute Bacterial Sinusitis

- First-line: amoxicillin or amoxicillin-clavulanate
- Penicillin allergy: clindamycin or levofloxacin
- Duration: 5-7 days

Pediatric Community Acquired Pneumonia (CAP)

- Empiric antibiotic therapy:
 - Amoxicillin, ampicillin, or penicillin for fully immunized patients in regions without high prevalence of penicillin-resistant pneumococcus
- Penicillin allergy: clindamycin or levofloxacin
- Suspected atypical pathogen: add macrolide
- <u>Duration</u>: 5 days from uncomplicated CAP improving during that time

Pediatric Urinary Tract Infection (UTI)

• <u>First-line</u>: cephalexin, sulfamethoxazole-trimethoprim, ampicillin + gentamicin, ceftriaxone, ciprofloxacin

Duration:

- 7-10 days
- 3-5 days (simple cystitis in adolescents)

Objectives

- Introduction to antimicrobial stewardship
- Describe national, regional, and local data related to antimicrobial use in WV
- Summarize treatment recommendations for common infections managed in the outpatient setting (e.g. respiratory, urinary and skin/soft tissue infections)

Introduce the stewardship team & current initiatives

Connect with networks of providers across the state to identify key factors influencing antimicrobial stewardship barriers & successes

Jacob Kilgore, MD, MPH, FAAP

Michael J. Smith, MD, MSCE, FAAP

AAP Mariana Lanata, MD, FAAP

AP Borden Samples, PharmD, BCPS

Bethany Wattles, PharmD, MHA

Joseph E. Evans, MD, FAAP

Top row (left to right) Jacob T. Kilgore Mariana Lanata Joseph E. Evans

West Virgiria

Ant biotic

Middle row (left to right) Michael J. Smith Borden Samples Bethany Wattles

Bottom row (left to right) Jennifer Sparks Brandi Holthaus Jonathan Willis

Brandi Holthaus, MD

Jonathan Willis, MS

Objectives

- Introduction to antimicrobial stewardship
- Describe national, regional, and local data related to antimicrobial use in WV
- Summarize treatment recommendations for common infections managed in the outpatient setting (e.g. respiratory, urinary and skin/soft tissue infections)
- Introduce the stewardship team & current initiatives
- Connect with networks of providers across the state to identify key factors influencing antimicrobial stewardship barriers & successes

Outpatient Antibiotic Use and the Need for Increased Antibiotic Stewardship Efforts

Rachel M. Zetts, MPH, Andrea Stoesz, MPH, Brian A. Smith, MPH, David Y. Hyun, MD

Drivers for outpatient prescriptions:

- Patient satisfaction and pressure
- Time constraints
- Diagnostic uncertainty
- External responsibility

Please, share your thoughts!

What are your main reasons to prescribe antibiotics?

What barriers are you all facing?

How can we help?

Connect with us!

• Please join our Listserv!

• Reach us directly at:

wvabxawarness@gmail.com

Community moniporo								
Connect With Us								
Resources	Interested in educational courses, webinars, lives chats & possible CME and/or							
	MOC?							
West Vinginia Ant biotic	Sign up on our listserv to stay connected and get involved with our ongoing outreach aimed at keeping West Virginians wild, wonderful and well!							
Awareness	Name*							
	First	Last						
	Credentials / Title *	Email *						
	Phone							
		_						
	Primary Practice Location *	Secondary Practice Location						
	Interested in being more involved with ant Virginia state level?	imicrobial stewardship work at the local, regional and West						
	Yes ONO							
	Submit							

THANK YOU

Together, we can help keep WV wild, wonderful & well!

https://jcesom.marshall.edu/departmentsdivisions/pediatrics/wv-antimicrobial-awareness/